
PHYS 301 – Assignment #4

Due Wednesday, Nov. 20 at 14:00

Imagine a uniformly-charged sphere spinning with angular speed ω about an axis that passes through

its centre. Because the sphere is charged, its spin results in the motion of charge or a current that

creates a magnetic field. In this assignment, we will attempt to calculate the magnetic field produced

at the centre of a charged sphere spinning with angular speed ω. Along the way, we will also find the

magnetic fields due to a spinning loop of charge and a spinning charged disk. Next, we will deduce

the magnetic moments of spinning charged objects by relating them to the corresponding angular

momenta of the spinning masses. Finally, we will conclude by making some comments about the

intrinsic “spin angular momentum” and magnetic moment of elementary particles, like the electron.

1(a) Consider a sphere of total charge Q and radius R. The sphere is uniformly-charged with

charge density ρ and rotates with angular velocity ω about an axis that passes through its centre.

In spherical coordinates, a volume element in the sphere is given by:

dτ = r2 sin θ dr dθ dτ.

Ultimately, we will be using the Biot-Savart law:

B(r) =
µ0

4π

∫
I dℓ× r̂

r 2

to calculate the magnetic field at the centre of the of the rotating sphere. Show that, for our volume

element, the quantity I dℓ can be expressed as:

I dℓ = ρωr3 sin2 θ dr dθ dϕ.
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(b) Next, using the Biot-Savart law, show that the magnetic field at the centre of the sphere due

to just the volume element from part (a) would be given by:

dB =
µ0

4π
ρωr sin3 θ dr dθ dϕ. (1)

Recall that r is the distance from the source charge (moving with speed v) to the field point (the

centre of the sphere, in this case). Also, keep in mind that, because of the symmetry of the problem,

only a spefic component of the magnetic field due to our charged volume element will survive.

The plan is to evaluate this integral one variable at a time so as to also find the magnetic fields at

the centre of a (i) current loop and (ii) rotating charged disk.

(c) First, assume that the sphere is to be rotated about the z-axis. Show that charge per unit length

λ of our volume element is given by:

λ =
dQ

r sin θ dϕ

= ρr dθ dr,

such that:

dB =
µ0

4π
ωλ sin3 θ dϕ.

Finally, we will now set θ = π/2 (so that out volume element lies in the xy-plane). Then, upon

evaluating the ϕ integral, we will have found the magnetic field at the centre of a ring of radius r

which corresponds to the origin of our coordinate system. Show that:

Bring =
1

2
µ0λω.
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(d) Now, return to Eq. (1). We still imagine that the sphere is rotating about the z-axis and now

the goal is to find the magnetic field due to a rotating charged disk. Show that the charge per unit

area of our volume element can be expressed as:

σdisk =
dQ

r sin θ dϕ dr

= ρr dθ,

such that:

dB =
µ0

4π
ωσdisk sin

3 θ dϕ dr.

Now set θ = π/2 (so that out volume element lies in the xy-plane). Then, upon evaluating the ϕ

and r integrals, we will have found the magnetic field at the centre of disk of radius R. Show that:

Bdisk =
1

2
µ0σdiskωR.

(e) Finally, return to Eq. (1) again and evaluate the integrals over r, θ, and ϕ to find the magnetic

field at the centre of the spinning sphere. Specially, show that:

Bsphere =
1

3
µ0ρωR

2.

(f) This part of the problem won’t be graded. However, it is worth noting that we can change the

order of integration to find the magnetic field at the centre of a uniformly-charged spherical shell.

Show that, for this case, the charge per unit area of our volume element can be expressed as:

σshell =
dQ

r2 sin θ dθ dϕ

= ρ dr,

such that:

dB =
µ0

4π
ωσshellr sin

3 θ dθ dϕ.

Completing the integration reveals that the magnetic field at the centre of a uniformly-charged
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spherical shell spinning with angular speed ω is given by:

Bshell =
2

3
µ0σshellωr.

2. We have now seen, perhaps not surprisingly, that spinning charged objects generate magnetic

fields. There is a magnetic dipole moment of magnitude µ associated with each of these objects

that can be calculated using:1

µ = π

∫
r2 dI. (2)

You might have already noticed from mechanics that Eq. (2) is similar to how the rotational inertia

Irot of a rigid body is calculated:2

Irot =

∫
r2 dm. (3)

Recall also that the angular momentum of a rotating rigid body has magnitude:

L = Irotω (4)

Use Eqs. (2)-(4) to show that the so-called gyromagnetic ratio γ = µ/L is given by:

γ =
Q

2M
,

where Q is the total charge of a rotating body and M is its mass. Assume that both the charge

and mass densities of the rotating body are uniform. This analysis serves to illustrate the close link

between magnetic moments and angular momentum.

1Griffiths uses m for the magnetic moment. I will use µ in this assignment to avoid confusion with mass.
2Another notational inconvenience! I’ll use I for current and Irot for rotational inertia.
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3. We could evaluate the integral in Eq. (2) to find the magnetic moments of the ring, disk, spherical

shell, and solid sphere that we considered in the first problem. However, that’s not necessary because

the rotational inertia for these shapes have already been tabulated and we can convert from angular

momentum to magnetic moment using the gyromagnetic ratio. Use the following table of rotational

inertia to find the magnetic moments of a uniformly-charged spinning (i) ring, (ii) disk, (iii) sphere,

and (iv) spherical shell.

4. An electron possesses an intrinsic magnetic moment of magnitude:

µs = gs
e

2m
S

where S is the the “spin angular momentum”. The so-called g-factor gs ≈ 2 and it is a quantum

mechanical correction to the classical gyromagnetic ratio derived in question 2. It is conventional

to write the magnetic moment as:

µs = gsµB
S

ℏ
,

where µB = eℏ/(2m) is the Bohr magneton and S = ℏ/2 is the electron’s spin angular momentum.
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The reason S is called “spin” is because it is as if the electron were a small charged ball spinning

such that it possess angular momentum S and magnetic moment µ. However, as we’ll see, we

should not take this picture literally. It is just a cartoon used to try to give a classical analogue of

the purely quantum mechanical properties of the electron. We should view the electron’s magnetic

moment and spin angular momentum as intrinsic properties of the electron, in the same way that

it has an intrinsic mass me and charge e.

To see that the “spin” picture should not be taken literally, we will use the so-called classical

electron radius to estimate how fast an electron would need to spin to achieve its observed spin

angular momentum and magnetic moment. Again, this is just a toy model. The electron is a point

particle with no well-defined radius, however, for the purposes of this calculation, we shall adopt

the classical electron radius which is given by:

re =
1

4πε0

e2

mec2
≈ 2.8179× 10−15 m.

(a) Assume the electron can be treated as a uniform ball of mass me, charge e, and radius re. At

what angular speed ω would it need to spin in order to achieve an angular momentum S = ℏ/2 and

magnetic moment µ = µB?

(b) How fast, in terms if the speed of light c, would a point on the surface of such a spherical

electron be moving? Take the point to be a distance re away from the rotation axis.

This analysis should have revealed that a classical spherical electron would have to spin at an

unrealistic speed to account for its spin angular momentum and magnetic moment, thus confirming

that this picture is not viable. Even if relativistic effects are taken into account, this classical

model cannot properly account for the observed spin angular momentum and magnetic moment.

Furthermore, both of these quantities are quantized which clearly has no classical analogue.
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